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A series of enantiomeric N-substituted 2,3,4,4a,5,6,7,7a-octahydro-1H-benzofuro[3,2-e]isoquinolines
was synthesized. The (-)-enantiomers had much greater κ-, μ-, and δ-opioid receptor binding affinity
than the corresponding (þ)-enantiomers. Compounds (-)-1a, (-)-1b, and (-)-1c displayed subnano-
molar binding affinity for the μ-receptor, and (-)-1b had a high affinity for the κ-receptor. Compound
(-)-1a was a μ-partial agonist and κ-antagonist. Compound (-)-1b was a potent neutral μ-antagonist
(Kd = 0.22 nM) and a κ-partial agonist.

Introduction

A growing body of evidence suggests that ligands targeting
more than one opioid receptor subtypemay be beneficial. For
example, buprenorphine is a mixed μ-partial agonist, κ-an-
tagonist, and δ-antagonist that was initially marketed as an
analgesic and is nowusedprimarily for the treatment of opioid
dependence.1 Nalbuphine is a κ-agonist/μ-antagonist analge-
sic with a low incidence of side effects and dependence in
animals and humans.2 In behavioral studies, nonselective κ-
agonists with varying activity at μ-receptors decreased the
frequency of cocaine self-administration more effectively and
with fewer adverse effects than highly selective κ-agonists.3

Therefore, novel opioid receptor ligands with varying degrees
of agonistic and antagonistic properties for the three subtypes
of opioid receptors may be potential therapeutic agents and
useful tools for determining the relative functional contribu-
tion of each opioid receptor subtype in normal physiological
processes and pathological states.

Approaches based on simplification of the morphine ske-
leton, which consists of five rings [ABCNO (Chart 1)], for the
development of novel opioid ligands have resulted in the
discovery of several clinically important analgesics, such as
methadone (A), pentazocine (ABN), and levorphanol
(ABCN).4 Another interesting class of morphine fragments
consists of 2,3,4,4a,5,6,7,7a-octahydro-1H-benzofuro[3,2-e]-
isoquinolines, the ACNO ring system of morphine. The N-
cyclopropylmethyl-substituted ACNO derivative 1b poss-
essed potent oral analgesic activity and narcotic antagonism
activity and is likely tohave a lowpotential for addiction.5The
bridgedACNOcompoundNIH10412 (2) displayed κ-agonist
and μ-partial agonist properties, which may be a potential
agent for the treatment of opioid dependence.6 However, 1b
also shows significant binding to σ-receptors (Ki = 21 nM),
which indicates potential psychotomimetic effects.7

We observed that historically most ACNO compounds
were prepared and pharmacologically evaluated in racemic
form, which is the case with many other synthetic narcotic
analgesics. The only chiral ACNO derivatives that have been
studied are (þ)-1a and (-)-1a. These compounds were pre-
pared by optical resolution of (()-1a, and (-)-1a was more
potent than (þ)-1awith respect to antinociceptive and narco-
tic antagonism activity.5b Further studies disclosed that the σ1
receptor binding ability of racemic benzomorphans (e.g., SKF
10,047, cyclazocine) was primarily due to the (þ)-enantiomer,
whereas the (-)-enantiomer had a higher affinity for opioid
receptors.8 Therefore, we hypothesize that the opioid activity
of racemic ACNO compoundsmay be also from (-)-enantio-
mers, whereas the σ-receptor binding affinity of racemic
ACNO compounds was from (þ)-enantiomers. Therefore,
preparation of enantiomeric pureACNO ligands for pharma-
cological studies is essential for the eliminationof the potential
side effects due to theσ-receptor affinityof the racemicACNO
ligands and precisely determine the structure-activity rela-
tionship (SAR) for ACNO compounds.

Recently, an efficient asymmetric total synthesis of the
ACNOfragment ofmorphinehasbeen achievedandprovided
(-)-1a in eight steps with a total yield of 27%.9 It is well-
known that the N-substituents play crucial roles in both the
binding affinity and intrinsic activity of opioid ligands for the
three subtypes of opioid receptors. Thus, a series of enantio-
mericN-substituted ACNO derivatives (Chart 2) was synthe-
sized, and their opioid receptor binding affinities, σ-receptor
binding affinities, and intrinsic activities for κ-, μ-, and
δ-opioid receptors were investigated.

Chemistry

Optically active aryl iodides (-)-6 and (þ)-6 were synthe-
sized from 5,6,7,8-tetrahydroisoquinoline according to estab-
lished procedures in 92-93% enantiomeric excess (ee).9 Tre-
atment of iodides (-)-6 and (þ)-6 with Pd(OAc)2, (o-toyl)3P,
and Et3N in acetonitrile at 120 �C using microwave-assisted
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heating provided enamines (þ)-7 and (-)-7, respectively, with
the tetracyclic ACNOring system as shown in Scheme 1. PtO2

catalytic hydrogenation of enamine (þ)-7 yielded the trans-
isomer (-)-3a and the cis-isomer (-)-5 in a ratio of 7:1. The
optically active (-)-3a and (-)-5 (93% ee) were then trans-
formed to their hydrochloride salts followed by recrystalliza-
tion to yield optically pure (-)-3a and (-)-5 (>99% ee),
respectively. The corresponding enantiomers (þ)-3a and

(þ)-5 were obtained from (-)-7 via the same procedures.
O-Demethylation of 9-methoxy-substituted compounds (-)-3a,
(þ)-3a, (-)-5, and (þ)-5 using BBr3-(CH3)2S in 1,2-dichloro-
ethane furnished phenols (-)-1a, (þ)-1a, (-)-4, and (þ)-4,
respectively, in moderate to high yields.

Treatment ofN-methyl (Me)-substituted (-)-3a and (þ)-3a
with 2,2,2-trichloroethyl chloroformate followed by Zn re-
ductionprovidednor-analogues (-)-8 and (þ)-8, respectively.
N-Alkylation of (-)-8 using cyclopropylmethyl bromide and
2-phenylethyl bromide gave N-CPM-substituted (-)-3b
and N-2-phenylethyl (PE)-substituted (-)-3c, respectively.
O-Demethylation of (-)-3b and (-)-3c provided phenols
(-)-1b and (-)-1c, respectively. Enantiomeric (þ)-3b, (þ)-3c,
(þ)-1b, and (þ)-1c were obtained from (þ)-8 according
to the procedure for the preparation of the corresponding
(-)-enantiomers.

Pharmacology

The κ-, μ-, and δ-opioid receptor binding data for enantio-
meric ACNO compounds are listed in Table 1. Generally, the
(-)-enantiomers possessed much greater κ-, μ-, and δ-opioid
receptor binding affinity than their corresponding (þ)-enan-
tiomers. The (-)-9-hydroxy-substituted analogues had higher
affinity than their corresponding (-)-9-methoxy-substituted
analogues for all three subtypes of opioid receptors, which is
consistent with the SAR for most opioid ligands in the
literature.4

The trans-(-)-isomers, (-)-3a and (-)-1a, demonstrated
stronger binding affinities than the cis-(-)-isomers, (-)-5 and
(-)-4, respectively, for κ-, μ-, and δ-opioid receptors. In
contrast to the (-)-enantiomers, none of the (þ)-enantiomers
ofACNOderivatives displayed significant binding affinity for
the opioid receptors. Thus, the ability of racemic ACNO
compounds to interact with opioid receptors resided with
their (-)-enantiomers.

In the series,N-Me- andN-PE-substituted (-)-1a and (-)-
1c were potent μ-opioid receptor ligands (Ki = 0.65 and
0.30 nM, respectively) with moderate affinities for κ- and
δ-receptors. Replacement of the N-Me group of (-)-1a with

Chart 1

Chart 2

Scheme 1
a

aReagents and conditions: (a) Pd(OAc)2, (o-tolyl)3P, Et3N, CH3CN, 120 �C,microwave, 30min, 93% ee; (b)H2, PtO2, EtOH, rt; (c) HCl, CH2Cl2, rt;

(d) recrystallization, 2-propanol/EtOAc, >99% ee; (e) BBr3-Me2S, ClCH2CH2Cl, reflux; (f) ClCO2CH2CCl3, ClCH2CH2Cl, K2CO3, reflux; (g) Zn,

HOAc, rt; (h) cyclopropylmethyl bromide or 2-phenylethyl bromide, DMF, K2CO3, 60 �C.
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anN-CPMgroup [i.e., (-)-1b] greatly enhanced its binding to
κ-, μ-, and δ-opioid receptors. Compound (-)-1b was the
most potent κ-, μ-, and δ-opioid receptor ligand (Ki = 0.10,
0.08, and 2.0 nM, respectively) in this study.

Theσ1 andσ2 receptor binding affinities of the enantiomeric
trans-ACNO compounds are listed in Table 2. None of the
compounds had appreciable σ1 or σ2 affinity relative to (-)-
and (þ)-pentazocines.

The functional activities of compounds (-)-1a, (-)-1b,
and (-)-1c were investigated using [35S]GTP-γ-S assays.
The N-Me-substituted (-)-1a exhibited μ-partial agonist
activity (ED50= 19 nM;Emax= 35%) andmoderate κ-anta-
gonist activity (Table 3). TheN-CPM-substituted (-)-1b was
a potent κ-partial agonist with an ED50 of 2.3 nMand anEmax

of 23%, a potent μ-antagonist (Kd = 0.22 nM), and a
moderate δ-antagonist (Kd = 20 nM). The N-PE-substituted

(-)-1c was a potent μ-full agonist with an ED50 of 10 nM,
a δ-partial agonist with an Emax of 64%, and a weak
κ-antagonist.

In addition to treatment of opioid abuse and overdose, μ-
antagonists have other clinical utilities. Alvimopan, a novel
agent for the treatment of postoperative ileus, is a selective,
peripherally acting μ-antagonist.12 Naltrexone, a nonselective
μ-antagonist, has been used to treat alcoholism since 1994.
Further studies have identified that (-)-1b was an “almost
neutral” μ-antagonist in CHO cells expressing the cloned
human μ-opioid receptor.13 Recently, neutral antagonists
have been suggested to be a better potential treatment for
opioid overdose, opioid dependence, and side effects asso-
ciated with opioid analgesics.14 Moreover, the efficacy of
μ-antagonist treatments of alcohol addiction, such as naltrex-
one,15 might be improved via use of a neutral μ-antagonist,
since such compounds might produce less aversive effects.14

Therefore, (-)-1bmay be a lead for the development of novel
treatments for opioid addiction and alcoholism and may be a
useful pharmacological tool for studying the role that con-
stitutive opioid receptor activity plays in various disease
states.

Conclusion

In summary, a series of enantiomeric N-substituted ACNO
compounds was synthesized, and the (-)-enantiomers de-
monstratedmuchgreater κ-,μ-, andδ-opioid receptor binding
affinities than their corresponding (þ)-enantiomers. N-Me-
substituted (-)-1a exhibited subnanomolar binding affinity
for μ-receptor and μ-partial agonist activity in [35S]GTP-γ-S
assays. The N-CPM-substituted (-)-1b was a potent ligand
for κ-, μ-, and δ-opioid receptors and displayed potent
μ-antagonist activity and κ-partial agonist activity. In addi-
tion, (-)-1b was found to be a potent almost neutral
μ-antagonist, which may be a better potential treatment for
opioid dependence and toxicity. N-PE-substituted (-)-1c
possessed subnanomolar μ-receptor binding affinity and was
a full μ-agonist. These ligands are promising for the develop-
ment of novel treatments for opioid receptor-related disorders
and useful tools for the study of opioid pharmacology.

Table 1. Opioid Receptor Binding Data for the Enantiomeric N-Substituted ACNO Compoundsa

Ki (nM) Ki ratio

compd κ μ δ κ/μ δ/μ

(-)-3a 3470( 340 236 ( 43 9750 ( 490 15 41

(-)-3b 41( 2.0 30 ( 4.0 544 ( 29 1.4 18

(-)-3c 1850( 72 24 ( 2.0 490 ( 22 77 20

(-)-5 >10000 8840 ( 650 >10000 - -
(þ)-3a 7230( 590 7610 ( 520 >10000 0.95 -
(þ)-3b >10000 >10000 >10000 - -
(þ)-3c 1140( 65 145 ( 16 8390 ( 320 7.9 58

(þ)-5 >10000 >10000 >10000 - -
(-)-1a 14( 1.2 0.65 ( 0.07 44 ( 2.0 21 68

(-)-1b 0.10( 0.04 0.080 ( 0.05 2.0 ( 0.10 1.3 25

(-)-1c 15( 1.0 0.30 ( 0.02 6.0 ( 0.30 50 20

(-)-4 565( 53 27 ( 3.0 1050 ( 53 21 39

(þ)-1a 6900( 620 8000 ( 1100 >10000 0.86 -
(þ)-1b 699( 51 1330 ( 190 >10000 0.53 -
(þ)-1c 1240( 92 275 ( 30 5000 ( 150 4.5 18

(þ)-4 1850( 130 >10000 >10000 <0.19 -
(-)-pentazocine 2.2( 0.20 3.9 ( 0.70 49 ( 15 0.56 13

(-)-naloxone 3.0( 0.02 0.98 ( 0.05 51 ( 3.0 1.8 49
a [125I]IOXY binding used membranes prepared from CHO cells that stably express the human κ-, μ-, or δ-opioid receptor. All results include the

standard deviation (n = 3). Assays were run as previously noted.10

Table 2. σ1 and σ2 Receptor Binding Affinities of N-Substituted trans-
ACNO Compoundsa

Ki (nM) Ki ratio

compd σ1 σ2 σ2/σ1

(-)-3a >10,000 7480( 650 <0.7

(-)-3b 285( 27 3270( 77 11

(-)-3c 560( 15 3270( 340 5.8

(þ)-3a 658( 53 >10,000 >15

(þ)-3b 62( 4.0 4370( 500 71

(þ)-3c 278( 26 2550( 72 9.2

(-)-1a >10000 >10000 -
(-)-1b 399( 42 >10000 >25

(-)-1c 239( 11 5380( 240 23

(þ)-1a 2010( 120 >10000 >5.0

(þ)-1b 201( 11 1030( 87 5.1

(þ)-1c 131( 17 263( 20 2.0

(-)-pentazocine 16( 2.0 56( 6.0 3.5

(þ)-pentazocine 6.0( 2.0 1360( 150 226

naloxone >10000 >10000 -
aAffinities were determined in rat brain homogenates using stan-

dard assay conditions. σ1 receptors were labeled with [3H]-(þ)-penta-
zocine. σ2 receptors were labeled with [3H]di-o-tolylguanidine in the
presence of (þ)-pentazocine to block σ1 receptors. Nonspecific binding
was assessed in the presence of haloperidol. The values in this table
represent the means ( the standard error of the mean from replicate
assays.11
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Experimental Section

Melting points were determined on a MEL-TEMP II appara-
tus by Laboratory Devices and are uncorrected. NMR spectra
were recorded on Bruker DPX-200 and AV-400 FT-NMR
spectrometers. Chemical shifts are expressed in parts per million
on the δ scale relative to a tetramethylsilane (TMS) internal
standard. EI mass spectra and high-resolution mass measure-
ments (EIHRMS) were recorded using a Finnigan MAT 95S
mass spectrometer. ESIHRMS data were obtained using a
Bruker Daltonik micrOTOF mass spectrometer. Elemental ana-
lyses were performed with a Heraeus varioIII-NCSH instrument
and were within(0.4% for the elements indicated. The purity of
all tested compounds was determined by combustion analysis or
HPLC and was not less than 95%. Optical rotations were
obtained using a JASCO DIP-370 polarimeter and are reported
at the sodiumD-line (589 nm), unless otherwise noted. Thin-layer
chromatography (TLC) was performed on Merck (art. 5715)
silica gel plates and visualized under UV light (254 nm), upon
treatmentwith iodine vapor, or uponheating after treatmentwith
5% phosphomolybdic acid in ethanol. Medium-pressure liquid
chromatography (MPLC) was performed with Merck (art.
15111) 15-40 μm silica gel 60. Anhydrous tetrahydrofuran was
distilled from sodium benzophenone prior to use. No attempts
were made to optimize yields.

(-)-trans-3-Methyl-2,3,4,4ar,5,6,7,7ar-octahydro-1H-benzo-

[4,5]furo[3,2-e]isoquinolin-9-ol [(-)-1a]. A solution of (-)-3a
(150 mg, 0.55 mmol) and BBr3-(CH3)2S (2.47 mmol) in 1,2-
dichloroethane (25 mL) was heated to reflux for 3 h and then
cooled to rt. The reaction mixture was treated with H2O (5 mL)
and basified to pH >10 with Na2CO3(saturated). The solution
was extracted with an IPA/CH2Cl2 mixture (1/4, 3 � 50 mL).
The organic layer was dried (MgSO4), filtered, and evaporated.
The crude residue was chromatographed (MPLC, silica gel; 0.1/
1/19 NH4OH/CH3OH/CH2Cl2) to afford (-)-1a (121mg, 85%)
as a colorless oil: mp 268 �C (HCl salt, IPA/EtOAc); [R]D-34.1
(c 1.10, MeOH); 1H NMR (400 MHz, CDCl3) δ 1.10-1.25 (m,
1H), 1.31-1.46 (m, 2H), 1.46-1.60 (m, 2H), 1.75-1.85 (m, 2H),
1.85-1.96 (m, 1H), 1.96-2.10 (m, 1H), 2.41 (s, 3H), 2.42-2.46
(m, 1H), 2.59 (t, J = 11.8 Hz, 1H), 2.74-2.82 (m, 2H), 4.41 (t,
J= 6.1 Hz, 1H), 6.69-6.74 (m, 2H), 6.98 (dd, J= 6.6, 2.1 Hz,
1H); 13C NMR (100MHz, CDCl3) δ 20.2, 24.6, 28.3, 38.7, 39.0,
45.7, 48.3, 50.8, 57.1, 89.1, 115.6, 118.3, 120.0, 132.8, 142.3,
147.3; MS (EI, 70 eV) m/z 259 (Mþ, base); EIHRMS calcd for
C16H21NO2 [M]þ 259.1572, found 259.1572. Anal. (-)-1a 3HCl
(C16H21NO2 3HCl) C, H, N.

(-)-trans-3-Cyclopropylmethyl-2,3,4,4ar,5,6,7,7ar-octahydro-
1H-benzo[4,5]furo[3,2-e]isoquinolin-9-ol [(-)-1b]. Compound
(-)-1b was synthesized from (-)-3b according to the procedure
for the preparation of (-)-1a, which afforded a pale yellow solid
in 76%yield: 1HNMR (400MHz, CDCl3) δ 0.12-0.16 (m, 2H),
0.50-0.54 (m, 2H), 0.91-1.01 (m, 1H), 1.13-1.22 (m, 1H),
1.30-1.47 (m, 2H), 1.48-1.57 (m, 2H), 1.77-1.80 (m, 1H),
1.83-1.94 Hz (m, 2H), 2.04-2.12 (m, 1H), 2.39-2.50 (m, 3H),

2.62 (t, J=11.8Hz, 1H), 2.98-3.04 (m, 2H), 4.40 (t, J=6.0Hz,
1H), 6.66-6.74 (m, 2H), 6.97 (dd, J = 7.1, 1.4 Hz, 1H); 13C
NMR (50 MHz, CDCl3) δ 4.0, 4.1, 7.8, 20.3, 24.8, 28.3, 38.6,
38.8, 48.7, 49.8, 55.0, 63.5, 89.1, 115.7, 118.2, 120.0, 132.9, 142.4,
147.4; MS (EI, 70 eV) m/z 299 (Mþ, base); EIHRMS calcd for
C19H25NO2 [M]þ 299.1885, found 299.1888.

(-)-trans-3-(2-Phenylethyl)-2,3,4,4ar,5,6,7,7ar-octahydro-1H-

benzo[4,5]furo[3,2-e]isoquinolin-9-ol [(-)-1c]. Compound (-)-1c
was synthesized from (-)-3c according to the procedure for the
preparation of (-)-1a, which afforded a colorless oil in 83%
yield: mp 236-238 �C (HCl salt, IPA/EtOAc); [R]D -48.5 (c
1.08, MeOH); 1H NMR (400 MHz, CDCl3) δ 1.16-1.29 (m,
1H), 1.33-1.60 (m, 4H), 1.86 (tt, J = 13.1, 3.2 Hz, 2H),
1.89-1.97 (m, 1H), 2.07 (tt, J = 12.3, 3.7 Hz, 1H), 2.50 (td,
J= 11.8, 3.7 Hz, 1H), 2.66 (t, J= 11.7 Hz, 1H), 2.74-2.78 (m,
2H), 2.86-2.96 (m, 4H), 4.44 (t, J = 6.0 Hz, 1H), 6.72 (t, J =
7.6 Hz, 1H), 6.77 (dd, J = 8.0, 1.3 Hz, 1H), 7.03 (dd, J = 7.2,
1.3 Hz, 1H), 7.18-7.21 (m, 3H), 7.25-7.30 (m, 2H); 13C NMR
(100MHz, CDCl3) δ 20.2, 24.8, 28.3, 33.4, 38.9, 39.1, 48.9, 49.0,
55.1, 60.6, 89.5, 115.5, 118.7, 120.2, 126.1, 128.4, 128.7, 132.8,
140.2, 141.9, 147.2; MS (EI, 70 eV) m/z 349 (Mþ), 258 (base);
ESIHRMS calcd for C23H28NO2 [MH]þ 350.2115, found
350.2113. Anal. (-)-1c 3HCl (C23H27NO2 3HCl 3 1.1H2O) C,
H, N.
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